Advertisements
Advertisements
рдкреНрд░рд╢реНрди
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cos A = 4/5`
рдЙрддреНрддрд░
We know that `cos theta = "adjacent side"/"hypotenuse"`
Let us consider a right-angled ΔABC
Let opposite side BC = x.
By applying Pythagoras theorem, we get
ЁЭР┤ЁЭР╢2 = ЁЭР┤ЁЭР╡2 + ЁЭР╡ЁЭР╢2
25 = x + 16
x = 25 - 16 = 9
x = `sqrt9 = 3`
We know that `cosA = 4/5`
`sin A = "opposite side"/"hypotenuse" = 3/5`
`tan A = "opposite side"/"adjacent side" = 3/4`
`cosec A = 1/(sin A) = (1/3)/5 = 5/3`
`sec A = 1/(cos A) = (1/4)/5 = 5/4`
`cot A = 1/(tan A) =(1/3)/4 = 4/3`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
In ΔPQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan theta = 8/15`
If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`
If tan θ = `a/b` prove that `(a sin theta - b cos theta)/(a sin theta + b cos theta) = (a^2 - b^2)/(a^2 + b^2)`
If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.
if `sin theta = 3/4` prove that `sqrt(cosec^2 theta - cot)/(sec^2 theta - 1) = sqrt7/3`
Evaluate the following
sin2 30° + sin2 45° + sin2 60° + sin2 90°
What will be the value of sin 45° + `1/sqrt(2)`?
Find will be the value of cos 90° + sin 90°.
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.