Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If `tan theta = 24/7`, find that sin ЁЭЬГ + cos ЁЭЬГ
рдЙрддреНрддрд░
Let x − 1 be the hypotenuse By applying Pythagoras theorem we get
ЁЭР┤ЁЭР╢2 = ЁЭР┤ЁЭР╡2 + ЁЭР╡ЁЭР╢2
ЁЭСе2 = (24)2 + (7)2
ЁЭСе2 = 576 + 49 = 62.5
x = 25
`sin theta = (AB)/(AC) = 24/25`
`cos theta = (BC)/(AC) = 7/25`
`sin theta + cos theta = 24/25 + 7/25`
`= 31/25`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
If 3 tan θ = 4, find the value of `(4cos theta - sin theta)/(2cos theta + sin theta)`
If sec θ = `13/5, "show that" (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.
If `tan theta = 1/sqrt7` `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta) = 3/4`
If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.
if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`
Evaluate the Following
4(sin4 30° + cos2 60°) − 3(cos2 45° − sin2 90°) − sin2 60°
`(sin theta)/(1 + cos theta)` is ______.
Find will be the value of cos 90° + sin 90°.
`sqrt(3)` cos2A + `sqrt(3)` sin2A is equal to ______.
If sinθ = `1/sqrt(2)` and `π/2 < θ < π`. Then the value of `(sinθ + cosθ)/tanθ` is ______.