Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If `tan theta = 24/7`, find that sin ЁЭЬГ + cos ЁЭЬГ
рдЙрддреНрддрд░
Let x − 1 be the hypotenuse By applying Pythagoras theorem we get
ЁЭР┤ЁЭР╢2 = ЁЭР┤ЁЭР╡2 + ЁЭР╡ЁЭР╢2
ЁЭСе2 = (24)2 + (7)2
ЁЭСе2 = 576 + 49 = 62.5
x = 25
`sin theta = (AB)/(AC) = 24/25`
`cos theta = (BC)/(AC) = 7/25`
`sin theta + cos theta = 24/25 + 7/25`
`= 31/25`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:
sin C, cos C
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`cos theta = 12/2`
If `tan theta = 1/sqrt7` `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta) = 3/4`
Evaluate the following
cos 60° cos 45° - sin 60° тИЩ sin 45°
Evaluate the Following
`sin 30^2/sin 45^@ + tan 45^@/sec 60^@ - sin 60^@/cot 45^@ - cos 30^@/sin 90^@`
Find the value of x in the following :
`2 sin x/2 = 1`
Find will be the value of cos 90° + sin 90°.
If sinθ = `1/sqrt(2)` and `π/2 < θ < π`. Then the value of `(sinθ + cosθ)/tanθ` is ______.
If cosec θ = `("p" + "q")/("p" - "q")` (p ≠ q ≠ 0), then `|cot(π/4 + θ/2)|` is equal to ______.
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.