Advertisements
Advertisements
प्रश्न
Find the value of x in the following :
`2 sin x/2 = 1`
उत्तर
We have
`2 sin x/2 = 1`
`=> sin x/2 = 1/2`
Since `sin 30^@ = 1/2`
Therefore
`sin x/2 = 1/2`
`sin x/2 = sin 30^@`
`x/2 = 30^@`
`x = 2 xx 30^@`
`=> x = 60^@`
Therefore
`x = 60^@`
APPEARS IN
संबंधित प्रश्न
If `sin theta = a/b` find sec θ + tan θ in terms of a and b.
Evaluate the following
sin2 30° + sin2 45° + sin2 60° + sin2 90°
Evaluate the following:
(cosec2 45° sec2 30°)(sin2 30° + 4 cot2 45° − sec2 60°)
Evaluate the Following
`sin 30^2/sin 45^@ + tan 45^@/sec 60^@ - sin 60^@/cot 45^@ - cos 30^@/sin 90^@`
Evaluate the Following:
`tan 45^@/(cosec 30^@) + sec 60^@/cot 45^@ - (5 sin 90^@)/(2 cos 0^@)`
Find the value of x in each of the following :
cos x = cos 60º cos 30º + sin 60º sin 30º
If cos (81 + θ)° = sin`("k"/3 - theta)^circ` where θ is an acute angle, then the value of k is ______.
Find will be the value of cos 90° + sin 90°.
Find an acute angle θ when `(cos θ - sin θ)/(cos θ + sin θ) = (1 - sqrt(3))/(1 + sqrt(3))`
The maximum value of the expression 5cosα + 12sinα – 8 is equal to ______.