Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If sec `theta = 17/8 ` verify that `((3-4sin^2theta)/(4 cos^2theta -3))=((3-tan^2theta)/(1-tan^2theta))`
рдЙрддреНрддрд░
It is given that sec ЁЭЬГ`=17/8`
Let us consider a right ΔABC right angled at B and ∠ЁЭР╢ = ЁЭЬГ
We know that cos ЁЭЬГ =`1/sectheta = 8/17 =(BC)/(AC)`
So, if BC = 8k, then AC = 17k, where k is a positive number.
Using Pythagoras theorem, we have:
`AC^2 = AB^2 + BC^2`
`тЯ╣ AB^2 = AC^2 − BC^2 = (17K)^2 − (8K)^2`
`тЯ╣ AB^2 = 289K^2 − 64K^2 = 225K^2`
тЯ╣AB = 15k.
Now, tan ЁЭЬГ =`(AB)/(BC) =15/8 and sin theta =(AB)/(AC) =(15K)/(17K)=15/17`
The given expression is `(3-4 sin^2theta)/(4cos^2 theta-3) = (3-tan^2theta)/(1-3tan^2theta)`
Substituting the values in the above expression, we get:
LHS=`(3-4(15/17)^2)/(4(8/17)^2-3)`
=`(3-(900/289))/((250/289)-3)`
=`(867-900)/(256-867)=-33/-611 =33/611`
RHS = `(3-(15/8)^2)/(1-3(15/8)^2)`
= `(3-225/64)/(1-675/64)`
= `(192-255)/(64-675)=-33/-611 = 33/611`
∴ LHS = RHS
Hence proved.
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
If cos θ = `3/5` , show that `((sin theta - cot theta ))/(2tan theta)=3/160`
In a ΔABC , ∠B = 90° , AB = 12 cm and BC = 5 cm Find
(i) cos A (ii) cosec A (iii) cos C (iv) cosec C
If x = cot A + cos A and y = cot A – cos A then prove that `((x-y)/(x+y))^2 + ((x-y)/2)^2=1`
Evaluate:
`(sin30°)/(cos 45°)+(cot45°)/(sec60° )- (sin60°)/(tan45°)+(cos30°)/(sin90°)`
If cos A = `(1)/(2)` and sin B = `(1)/(sqrt2)`, find the value of: `(tan"A" – tan"B")/(1+tan"A" tan"B")`.
Are angles A and B from the same triangle? Explain.
If cosec θ = `sqrt5`, find the value of:
- 2 - sin2 θ - cos2 θ
- 2 + `1/sin^2"θ" – cos^2"θ"/sin^2"θ"`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sec B = `(15)/(12)`
If cosB = `(1)/(3)` and ∠C = 90°, find sin A, and B and cot A.
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: sin A cos A
From the given figure, find the values of tan C