Advertisements
Advertisements
प्रश्न
If x = cot A + cos A and y = cot A – cos A then prove that `((x-y)/(x+y))^2 + ((x-y)/2)^2=1`
उत्तर
LHS = `((x-y)/(x+y))^2 + ((x-y)/2)^2`
=`[((cotA+cosA)-(cotA-cosA))/((cotA+cosA)+(cotA-cosA))]^2 + [((cotA+cosA)-(cotA-cosA))/2]^2`
=`[(cotA+cosA-cotA+cosA)/(cotA+cosA+cotA-cosA)]^2 + [(cotA+cosA-cotA+cosA)/2]^2`
=`[(2cosA)/(2cotA)]^2 + [(2cosA)/2]^2`
=`[(cosA)/(((cosA)/(sinA)))]^2 + [cosA]^2`
=`[(sinA cosA)/cosA]^2 + [cosA]^2`
=`[sinA]^2 + [cosA]^2`
=`sin^2 A + cos^2 A`
=1
=RHS
APPEARS IN
संबंधित प्रश्न
If 3 cot A = 4, Check whether `((1-tan^2 A)/(1+tan^2 A)) = cos^2 "A" - sin^2 "A"` or not.
In a ΔABC, right angled at A, if tan C = `sqrt3` , find the value of sin B cos C + cos B sin C.
If tan θ = `1/sqrt(7) `show that ` (cosec ^2 θ - sec^2 θ)/(cosec^2 θ + sec^2 θ ) = 3/4`
Evaluate:
`(sin30°)/(cos 45°)+(cot45°)/(sec60° )- (sin60°)/(tan45°)+(cos30°)/(sin90°)`
If A = 300 , verify that:
(ii) cos 2A = `(1- tan^2A)/(1+tan^2A)`
Prove that
cosec (65 °+ θ) sec (25° − θ) − tan (55° − θ) + cot (35° + θ) = 0
If sin A + cosec A = 2;
Find the value of sin2 A + cosec2 A.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tan C = `(5)/(12)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sec B = `(15)/(12)`
If sin A = `(7)/(25)`, find the value of : `(2"tanA")/"cot A - sin A"`