Advertisements
Advertisements
प्रश्न
If Sec 4A = cosec (A – 20°) where 4A is an acute angle, find the value of A.
उत्तर
Sec 4A = sec [90 − 𝐴 − 20] [∵ sec(90 − θ) = cosec θ]
Sec 4A = sec (90 – A + 20)
Sec 4A = sec (110 – A)
4A = 110 – A
5A = 110
`A = 110/5 => A = 22`
APPEARS IN
संबंधित प्रश्न
If θ = 30° verify `tan 2 theta = (2 tan theta)/(1 - tan^2 theta)`
If cot θ = 2 find all the values of all T-ratios of θ .
In the adjoining figure, `∠B = 90° , ∠BAC = theta° , BC = CD = 4cm and AD = 10 cm`. find (i) sin theta and (ii) `costheta`
In a ΔABC , ∠B = 90° , AB = 12 cm and BC = 5 cm Find
(i) cos A (ii) cosec A (iii) cos C (iv) cosec C
If A and B are acute angles such that tan A =`1/3, tan B = 1/2 and tan (A + B) =` show that `A+B = 45^0`
`(cos 28°)/(sin 62°)` = ?
If cos A = `(1)/(2)` and sin B = `(1)/(sqrt2)`, find the value of: `(tan"A" – tan"B")/(1+tan"A" tan"B")`.
Are angles A and B from the same triangle? Explain.
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cosec C
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: `("cos A" - "sin A")/("cos A" + "sin A")`
If cos θ : sin θ = 1 : 2, then find the value of `(8costheta - 2sintheta)/(4costheta + 2sintheta`