Advertisements
Advertisements
Question
If Sec 4A = cosec (A – 20°) where 4A is an acute angle, find the value of A.
Solution
Sec 4A = sec [90 − 𝐴 − 20] [∵ sec(90 − θ) = cosec θ]
Sec 4A = sec (90 – A + 20)
Sec 4A = sec (110 – A)
4A = 110 – A
5A = 110
`A = 110/5 => A = 22`
APPEARS IN
RELATED QUESTIONS
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
If `sin (A – B) = 1/2` and `cos (A + B) = 1/2`, `0^@` < A + `B <= 90^@`, A > B Find A and B.
Find acute angles A & B, if sin (A + 2B) = `sqrt3/2 cos(A + 4B) = 0, A > B`
If x = cosec A +cos A and y = cosec A – cos A then prove that `(2/(x+y))^2 + ((x-y)/2)^2` = 1
Evaluate:
`(sin30°)/(cos 45°)+(cot45°)/(sec60° )- (sin60°)/(tan45°)+(cos30°)/(sin90°)`
If A = 450, verify that :
(i) sin 2A = 2 sin A cos A
If A = 600 and B = 300, verify that:
cos (A + B) = cos A cos B - sin A sin B
If A = 600 and B = 300, verify that:
(iii) tan (A-B) = `(tan A-tanB)/(1+tan A tan B)`
Given: sin θ = `p/q`.
Find cos θ + sin θ in terms of p and q.
In rhombus ABCD, diagonals AC and BD intersect each other at point O.
If cosine of angle CAB is 0.6 and OB = 8 cm, find the lengths of the side and the diagonals of the rhombus.