हिंदी

If cos A = 12 and sin B = 12, find the value of: ABABtanA – tanB1+tanAtanB. Are angles A and B from the same triangle? Explain. - Mathematics

Advertisements
Advertisements

प्रश्न

If cos A = `(1)/(2)` and sin B = `(1)/(sqrt2)`, find the value of: `(tan"A"  –  tan"B")/(1+tan"A" tan"B")`.

Are angles A and B from the same triangle? Explain.

योग

उत्तर

Consider the diagram below: 

cos A = `(1)/(2)`

i.e.`"base"/"hypotenuse"= (1)/(2)`

⇒ `"AB"/"AC" = (1)/(2)`

Therefore if length of AB = x, length of AC = 2x

Since
AB2 + BC2 = AC2        ...[Using Pythagoras Theorem]

(x)2 + BC2 = (2x)2

BC2 = 4x2 – x2 = 3x2

∴ BC = `sqrt3x`     ...(perpendicular)

Consider the diagram below: 

sin B = `(1)/(sqrt2)`

i.e.`"perpendicular"/"hypotenuse" = (1)/(sqrt2)`

⇒ `"AC"/"BC" = (1)/(sqrt2)`

Therefore if length of AC = x, length of BC = `sqrt2`

Since

AB2 + AC2 = BC2                   ...[Using Pythagoras Theorem]

AB2 + x2 = `(sqrt2x)^2`

AB2 = 2x2 – x2 = x2

∴ AB = x (base)

Now

tan A = `"perpendicular"/"base" = (sqrt3x)/(x) = sqrt3` 

tan B =`"perpendicular"/"base" = (x)/(x) =1`

Thererfore

`(tan"A"  –  tan"B")/(1+tan"A"tan"B")`

= `(sqrt3  –  1)/(1+sqrt3)`

= `(sqrt3  –  1)/(1+sqrt3) xx (1-sqrt3) /(1-sqrt3)`

= `((sqrt3 - 1) (1-sqrt3))/(1-3) `

= `(sqrt3 - 3 - 1 + sqrt3) / 2`

= `(2sqrt3-4)/2`

= `(cancel2 (sqrt3-2))/cancel2`

= `sqrt3 -2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals] - Exercise 22 (A) [पृष्ठ २८०]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 22 Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals]
Exercise 22 (A) | Q 14 | पृष्ठ २८०
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×