Advertisements
Advertisements
प्रश्न
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cosec C = `sqrt(10)`
उत्तर
cosec C = `sqrt(10)`
cosec C = `(1)/"sin C" = "Hypotenuse"/"Perpendicular" = sqrt(10)/(1)`
By Pythagoras theorem, we have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Base = `sqrt(("Hypotenuse")^2 - ("Perpendicular")^2`
⇒ Base
= `sqrt((sqrt(10))^2 - (1)^2`
= `sqrt(10 - 1)`
= `sqrt(9)`
= 3
sin C = `"Perpendicular"/"Hypotenuse" = (1)/sqrt(10)`
cos C = `"Base"/"Hypotenuse" = (3)/sqrt(10)`
tan C = `"Perpendicular"/"Base" = (1)/(3)`
sec C =`(1)/"cos C" = sqrt(10)/(3)`
cot C = `(1)/"tan A"` = 3.
APPEARS IN
संबंधित प्रश्न
In Fig below, Find tan P and cot R. Is tan P = cot R?
If A and B are acute angles such that tan A = 1/2, tan B = 1/3 and tan (A + B) = `(tan A + tan B)/(1- tan A tan B)` A + B = ?
If cot θ = 2 find all the values of all T-ratios of θ .
If a right ΔABC , right-angled at B, if tan A=1 then verify that 2sin A . cos A = 1
Evaluate:
sin600 cos300 + cos600 sin300
From the following figure, find the values of
(i) cos A
(ii) cosec A
(iii) tan2A - sec2A
(iv) sin C
(v) sec C
(vi) cot2 C - ` 1 / sin^2 "c"`
In a right-angled triangle, it is given that A is an acute angle and tan A = `(5) /(12)`.
find the value of :
(i) cos A
(ii) sin A
(iii) ` (cosA+sinA)/(cosA– sin A)`
In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
- cos B
- sin C
- tan2 B - sec2 B + 2
If 5 cos θ = 3, evaluate : `(co secθ – cot θ)/(co secθ + cot θ)`
If 2 cos θ = `sqrt(3)`, then find all the trigonometric ratios of angle θ