Advertisements
Advertisements
प्रश्न
From the following figure, find the values of
(i) cos A
(ii) cosec A
(iii) tan2A - sec2A
(iv) sin C
(v) sec C
(vi) cot2 C - ` 1 / sin^2 "c"`
उत्तर
Consider the diagram as
Given angle ADB = 90° and BDC = 90°
⇒ AB2 = AD2 + BD2 ...( AB is hypotenuse in ΔABD )
⇒ AB2 = 32 + 42
∴ AB2 = 9 + 16 = 25 and AB = 5
⇒ BC2 = BD2 + DC2 ...( BC is hypotenuse in ΔBDC )
⇒ DC2 = 122 - 42
∴ DC2 = 144 - 16 = 128 aand DC = 8`sqrt2`
(i) cos A = `"base"/"hypotenuse" = "AD"/"AB" =3/5`
(ii) cosec A = `"hypotenuse"/"perpendicular" = "AB"/"BD" =5/4`
(iii) tan A = `"perpendicular"/"base" = "BD"/"AD" =4/3`
sec A = `"hypotenuse"/"base" = "AB"/"AD" =5/3`
tan2 A - sec2 A = `(4/3)^2 - (5/3)^2`
= `16/9 - 25/9`
= `( – 9)/(9)`
= – 1
(iv) sin C = `"perpendicular"/"hypotenuse" = "BD"/"BC" = 4/12 = 1/3`
(v) sec C = `"hypotenuse"/"base" = "BC"/"DC" = 12/(8sqrt2) = 3/(2sqrt2) = (3sqrt2)/4`
(vi) cot C = `"base"/"perpendicular" = "DC"/"BD" = (8sqrt2)/4 = 2sqrt2`
sin C = `"perpendicular"/"hypotenuse" = "BD"/"BC" = 4/12 = 1/3`
cot2 C – ` 1/sin^2C = (2sqrt2)^2 - 1/(1/3)^2`
= 8 - 9
= – 1
APPEARS IN
संबंधित प्रश्न
If 3 cot A = 4, Check whether `((1-tan^2 A)/(1+tan^2 A)) = cos^2 "A" - sin^2 "A"` or not.
if `cos theta = 5/13` find the value of `(sin^2 theta - cos^2 theta)/(2 sin theta cos theta) = 3/5`
If sin ∝ = `1/2` prove that (3cos∝ - `4cos^2` ∝)=0
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cosec C = `sqrt(10)`
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: tan B.
If sinA = 0.8, find the other trigonometric ratios for A.
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos C
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of cos y
From the given figure, find the values of tan C
From the given figure, prove that θ + ∅ = 90°. Also prove that there are two other right angled triangles. Find sin α, cos β and tan ∅