Advertisements
Advertisements
Question
From the following figure, find the values of
(i) cos A
(ii) cosec A
(iii) tan2A - sec2A
(iv) sin C
(v) sec C
(vi) cot2 C - ` 1 / sin^2 "c"`
Solution
Consider the diagram as
Given angle ADB = 90° and BDC = 90°
⇒ AB2 = AD2 + BD2 ...( AB is hypotenuse in ΔABD )
⇒ AB2 = 32 + 42
∴ AB2 = 9 + 16 = 25 and AB = 5
⇒ BC2 = BD2 + DC2 ...( BC is hypotenuse in ΔBDC )
⇒ DC2 = 122 - 42
∴ DC2 = 144 - 16 = 128 aand DC = 8`sqrt2`
(i) cos A = `"base"/"hypotenuse" = "AD"/"AB" =3/5`
(ii) cosec A = `"hypotenuse"/"perpendicular" = "AB"/"BD" =5/4`
(iii) tan A = `"perpendicular"/"base" = "BD"/"AD" =4/3`
sec A = `"hypotenuse"/"base" = "AB"/"AD" =5/3`
tan2 A - sec2 A = `(4/3)^2 - (5/3)^2`
= `16/9 - 25/9`
= `( – 9)/(9)`
= – 1
(iv) sin C = `"perpendicular"/"hypotenuse" = "BD"/"BC" = 4/12 = 1/3`
(v) sec C = `"hypotenuse"/"base" = "BC"/"DC" = 12/(8sqrt2) = 3/(2sqrt2) = (3sqrt2)/4`
(vi) cot C = `"base"/"perpendicular" = "DC"/"BD" = (8sqrt2)/4 = 2sqrt2`
sin C = `"perpendicular"/"hypotenuse" = "BD"/"BC" = 4/12 = 1/3`
cot2 C – ` 1/sin^2C = (2sqrt2)^2 - 1/(1/3)^2`
= 8 - 9
= – 1
APPEARS IN
RELATED QUESTIONS
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
In right angled triangle ABC. ∠C = 90°, ∠B = 60°. AB = 15 units. Find remaining angles and sides.
If `sin (A – B) = 1/2` and `cos (A + B) = 1/2`, `0^@` < A + `B <= 90^@`, A > B Find A and B.
If sin θ = cos (θ – 45°), where θ – 45° are acute angles, find the degree measure of θ
If sec 2A = cosec (A – 42°) where 2A is an acute angle. Find the value of A.
If cos θ=0.6 show that (5sin θ -3tan θ) = 0
If A = 600 and B = 300, verify that:
(i) sin (A + B) = sin A cos B + cos A sin B
If A and B are acute angles such that tan A =`1/3, tan B = 1/2 and tan (A + B) =` show that `A+B = 45^0`
If sin A + cosec A = 2;
Find the value of sin2 A + cosec2 A.
If sinA = 0.8, find the other trigonometric ratios for A.