Advertisements
Advertisements
प्रश्न
In the adjoining figure, ΔABC is a right-angled triangle in which ∠B = 900, ∠300 and AC = 20cm. Find (i) BC, (ii) AB.
उत्तर
From the given right-angled triangle, we have:
`(BC)/(AC) = sin 30^0`
⇒`(BC)/20=1/2`
⇒BC = `20/2 = 10cm`
Also, `(AB)/(AC) = cos 30^0`
⇒`(AB)/20=sqrt(3)/2`
⇒`AB = (20xxsqrt(3)/2) = 10sqrt(3) cm`
∴ BC = 10cm and AB = 10`sqrt(3)` cm
APPEARS IN
संबंधित प्रश्न
If A, B, C are the interior angles of a ΔABC, show that `cos[(B+C)/2] = sin A/2`
In ΔABC , ∠C = 90° ∠ABC = θ° BC = 21 units . and AB= 29 units. Show thaT `(cos^2 theta - sin^2 theta)=41/841`
Evaluate:
`(sin30°)/(cos 45°)+(cot45°)/(sec60° )- (sin60°)/(tan45°)+(cos30°)/(sin90°)`
Show that:
(ii) `(cos30^0+sin 60^0)/(1+sin30^0+cos60^0)=cos 30^0`
Using the formula, sin A = `sqrt((1-cos 2A)/2) ` find the value of sin 300, it being given that cos 600 = `1/2`
If sin (A – B) = `1/2` and cos (A + B) = `1/2, 0^0 ≤ (A + B) ≤ 90^0` and A > B, then find A and B.
In triangle ABC, AB = AC = 15 cm and BC = 18 cm, find cos ∠ABC.
If cosB = `(1)/(3)` and ∠C = 90°, find sin A, and B and cot A.
If cosec θ = `(29)/(20)`, find the value of: cosec θ - `(1)/("cot" θ)`
From the given figure, find the values of sin B