Advertisements
Advertisements
प्रश्न
Prove that:
cosec2 45° - cot2 45° = 1
उत्तर
LHS= cosec2 45° - cot2 45°
= `(sqrt2)^2 –1^2 = 2 – 1 = 1 = RHS`
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
`(2 tan 30°)/(1-tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following
`sec 11^@/(cosec 79^@)`
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
find the value of: sin 30° cos 30°
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
find the value of: tan 30° tan 60°
find the value of: cos2 60° + sin2 30°
find the value of: cosec2 60° - tan2 30°
find the value of: cos2 60° + sec2 30° + tan2 45°
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
For any angle θ, state the value of: sin2 θ + cos2 θ
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
Verify cos3A = 4cos3A – 3cosA, when A = 30°
If sin 30° = x and cos 60° = y, then x2 + y2 is
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`