हिंदी

Prove that: cosec2 45°  - cot2 45°  = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

cosec2 45°  - cot2 45°  = 1

योग

उत्तर

LHS= cosec2 45° - cot2 45°

= `(sqrt2)^2 –1^2 = 2  – 1 = 1 = RHS`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [पृष्ठ २९१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 3.3 | पृष्ठ २९१

संबंधित प्रश्न

Evaluate the following in the simplest form:

sin 60° cos 30° + cos 60° sin 30°


If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1


Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º


`(2 tan 30°)/(1-tan^2 30°)` = ______.


State whether the following is true or false. Justify your answer.

sin (A + B) = sin A + sin B


Evaluate the following:

`(sin 20^@)/(cos 70^@)`


Evaluate the following :

`(sin 21^@)/(cos 69^@)`


Evaluate the following :

`tan 10^@/cot 80^@`


Evaluate the following

`sec 11^@/(cosec 79^@)`


Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°

Sin 59° + cos 56°


Express cos 75° + cot 75° in terms of angles between 0° and 30°.


If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?


find the value of: sin 30° cos 30°


If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.


find the value of: tan 30° tan 60°


find the value of: cos2 60° + sin2 30°


find the value of: cosec2 60° - tan2 30°


find the value of: cos2 60° + sec2 30° + tan2 45°


find the value of :

`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`


If sec A = cosec A and 0° ∠A ∠90°, state the value of A


If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ


For any angle θ, state the value of: sin2 θ + cos2 θ


If A = 30o, then prove that :

2 cos2 A - 1 = 1 - 2 sin2A


If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`


If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B


If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.


Verify cos3A = 4cos3A – 3cosA, when A = 30°


If sin 30° = x and cos 60° = y, then x2 + y2 is


The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to


Evaluate: `(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×