Advertisements
Advertisements
प्रश्न
Verify cos3A = 4cos3A – 3cosA, when A = 30°
उत्तर
L.H.S = cos3A
= cos3(30°)
= cos90°
= 0
R.H.S = 4cos3A – 3cosA
= 4cos330° – 3cos30°
=`4(sqrt(3)/2)^3 - 3(sqrt(3)/2)`
= `(4 xx 3sqrt(3))/8 - (3sqrt(3))/2`
= `(3sqrt(3))/2 - (3sqrt(3))/2`
= 0
∴ L.H.S = R.H.S
Hence it is proved.
APPEARS IN
संबंधित प्रश्न
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).