Advertisements
Advertisements
प्रश्न
Prove that:
cosec2 45° - cot2 45° = 1
उत्तर
LHS= cosec2 45° - cot2 45°
= `(sqrt2)^2 –1^2 = 2 – 1 = 1 = RHS`
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
`(2 tan 30°)/(1-tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Prove that
tan (55° − θ) − cot (35° + θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
find the value of: sin 30° cos 30°
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
find the value of: tan 30° tan 60°
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
Prove that:
cos2 30° - sin2 30° = cos 60°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Find the value of x in the following: 2 sin3x = `sqrt(3)`
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
The value of 5 sin2 90° – 2 cos2 0° is ______.