Advertisements
Advertisements
प्रश्न
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
उत्तर
sec30° cosec60° + cos60° sin30°.
cos30° = `sqrt(3)/(2)`
⇒ sec30° = `(2)/sqrt(3)`
sin60° = `sqrt(3)/(2)`
⇒ cosec60° = `(2)/sqrt(3)`
cos60° = `(1)/(2) , sin30° = (1)/(2)`
sec30° cosec60° + cos60° sin30°
= `(2)/sqrt(3) xx (2)/sqrt(3) + (1)/(2) xx (1)/(2)`
= `(4)/(3) + (1)/(4)`
= `(16 + 3)/(12)`
= `(19)/(12)`.
APPEARS IN
संबंधित प्रश्न
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
Find the value of:
tan2 30° + tan2 45° + tan2 60°
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
Find the value of x in the following: `sqrt(3)sin x` = cos x
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Verify cos3A = 4cos3A – 3cosA, when A = 30°
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`