Advertisements
Advertisements
प्रश्न
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
उत्तर
L.H.S. = `((cot30° + 1)/(cot30° -1))^2`
= `((sqrt(3) + 1)/(sqrt(3) - 1))^2`
= `((sqrt(3) + 1)/(sqrt(3) - 1) xx (sqrt(3) + 1)/(sqrt(3) + 1))^2`
= `((sqrt(3))^2 + (1)^2 + 2sqrt(3))/((sqrt(3))^2 + (1)^2 - 2sqrt(3)`
= `(3 + 1 + 2sqrt(3))/(3 + 1 - 2sqrt(3)`
= `(4 + 2sqrt(3))/(4 - 2sqrt(3)`
= `(2(2 + sqrt(3)))/(2(2 - sqrt(3))`
= `(2 + sqrt(3))/(2 - sqrt(3)`
= `(2/sqrt(3) + 1)/(2/sqrt(3) - 1)`
= `(sec30° + 1)/(sec30° - 1)`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
`(2 tan 30°)/(1+tan^2 30°)` = ______.
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following :
cosec 31° − sec 59°
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Prove that
tan (55° − θ) − cot (35° + θ) = 0
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
find the value of: cos2 60° + sin2 30°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Prove that : sec245° - tan245° = 1
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
Verify the following equalities:
sin2 60° + cos2 60° = 1
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`