Advertisements
Advertisements
प्रश्न
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
उत्तर
We have `sin (90^@ - theta) = cos theta` and `cos(90^@ - theta) = sin theta` so
`sin 596@ + cos 56^@ = sin(90^@ - 31^@) + cos 90^@ (90^@ - 34^@)`
`= cos 31^@ + sin 34^@`
Thus the desired expression is `cos 31^@ + sin 34^@`
APPEARS IN
संबंधित प्रश्न
An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
If sin x = cos y, then x + y = 45° ; write true of false
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Prove that : sec245° - tan245° = 1
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.