Advertisements
Advertisements
प्रश्न
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
उत्तर
`sqrt(3)`tan2x = cos60° + sin45° cos45°
⇒ `sqrt(3)tan2x = (1)/(2) + (1)/sqrt(2) xx (1)/sqrt(2)`
⇒`sqrt(3)tan2x = (1)/(2) + (1)/(2)`
⇒`sqrt(3)`tan2x =1
⇒ tan2x = `(1)/sqrt(3)`
⇒ tan2x = tan30°
⇒ 2x = 30°
⇒ x = 15°.
APPEARS IN
संबंधित प्रश्न
`(2 tan 30°)/(1+tan^2 30°)` = ______.
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
find the value of: sin 30° cos 30°
If sin x = cos x and x is acute, state the value of x
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Prove that : cos60° . cos30° - sin60° . sin30° = 0
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
If 2 sin 2θ = `sqrt(3)` then the value of θ is
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`