Advertisements
Advertisements
प्रश्न
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
उत्तर
We know that `cot (90^@ - theta) = tan theta` and `cos (90^@ - theta) = sin theta` so
`cot 85° + cos 75° = cot(90^@ - 5^@) + cos(90^@ - 15^@)`
`= tan 5^@ +sin 15^@`
Thus the desired expression is `tan 56^@ + sin 15^@`
APPEARS IN
संबंधित प्रश्न
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
If sin x = cos y, then x + y = 45° ; write true of false
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.