Advertisements
Advertisements
प्रश्न
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
उत्तर
We know that `sin(90^@ - theta) = cos theta` and `cos(90^@ - theta) = sin theta` So
`sin 67^@ + cos 75^@ = sin(90^@ - 23^@) + cos(90^@ - 15^@)`
`= cos 23^@ + sin 15^@`
Thus the desired expression is `cos 23^@ + sin 15^@`
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
If sin x = cos y, then x + y = 45° ; write true of false
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
secθ . Cot θ= cosecθ ; write true or false
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
Find the value of x in the following: `sqrt(3)sin x` = cos x
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is