Advertisements
Advertisements
प्रश्न
secθ . Cot θ= cosecθ ; write true or false
पर्याय
True
False
उत्तर
sec θ . cot θ = `(1)/(cosθ) (cosθ)/(sinθ) = (1)/(sinθ) = cosecθ`
Secθ . cot θ = cosec θ is true
APPEARS IN
संबंधित प्रश्न
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
find the value of: tan 30° tan 60°
find the value of: cos2 60° + sin2 30°
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
Find the value of x in the following: `sqrt(3)sin x` = cos x
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.
The value of 5 sin2 90° – 2 cos2 0° is ______.
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).