मराठी

secθ . Cot θ= cosecθ ; write true or false - Mathematics

Advertisements
Advertisements

प्रश्न

secθ . Cot θ= cosecθ ; write true or false

पर्याय

  • True

  • False

MCQ
बेरीज
चूक किंवा बरोबर

उत्तर

sec θ . cot θ = `(1)/(cosθ) (cosθ)/(sinθ) = (1)/(sinθ) = cosecθ`

Secθ . cot θ = cosec θ is true

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [पृष्ठ २९१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 8.2 | पृष्ठ २९१

संबंधित प्रश्‍न

Find the value of x in the following :

tan 3x = sin 45º cos 45º + sin 30º


An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.


Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º


Evaluate the following :

`(cot 40^@)/cos 35^@ -  1/2 [(cos 35^@)/(sin 55^@)]`


Evaluate the following :

`tan 35^@/cot 55^@  + cot 78^@/tan 12^@  -1`


Evaluate the following :

`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

tan 65° + cot 49°


Prove that  tan 20° tan 35° tan 45° tan 55° tan 70° = 1


Prove the following

`(tan (90 - A) cot A)/(cosec^2 A)   - cos^2 A =0`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cosec54° + sin72°


Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B


find the value of: tan 30° tan 60°


find the value of: cos2 60° + sin2 30°


prove that:

tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°


Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B


If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.


If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B


Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.


Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).


Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`


Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`


Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`


Find the value of x in the following: `sqrt(3)sin x` = cos x


The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to


If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.


The value of 5 sin2 90° – 2 cos2 0° is ______.


If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×