Advertisements
Advertisements
प्रश्न
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to
पर्याय
cos 60°
sin 60°
tan 60°
sin 30°
उत्तर
tan 60°
Explanation;
Hint:
`(2tan30^circ)/(1 - tan^2 30^circ) = (2 xx 1/sqrt(3))/(1 - (1/sqrt(3))^2`
= `2/sqrt(3) ÷ 1 - 1/3`
= `2/sqrt(3) ÷ 2/3`
= `2/sqrt(3) xx 3/2`
= `3/sqrt(3)`
= `sqrt(3)`
= tan 60°
APPEARS IN
संबंधित प्रश्न
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
Evaluate cos 48° − sin 42°
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
If sin x = cos y, then x + y = 45° ; write true of false
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Find the value of x in the following: `2sin x/(2)` = 1
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
Verify the following equalities:
sin2 60° + cos2 60° = 1
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`