Advertisements
Advertisements
प्रश्न
secθ . Cot θ= cosecθ ; write true or false
विकल्प
True
False
उत्तर
sec θ . cot θ = `(1)/(cosθ) (cosθ)/(sinθ) = (1)/(sinθ) = cosecθ`
Secθ . cot θ = cosec θ is true
APPEARS IN
संबंधित प्रश्न
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
`(2 tan 30°)/(1-tan^2 30°)` = ______.
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Prove that
tan (55° − θ) − cot (35° + θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
Prove that:
cos2 30° - sin2 30° = cos 60°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
For any angle θ, state the value of: sin2 θ + cos2 θ
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Prove that : cos60° . cos30° - sin60° . sin30° = 0
Find the value of x in the following: `sqrt(3)sin x` = cos x
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
The value of 5 sin2 90° – 2 cos2 0° is ______.