Advertisements
Advertisements
प्रश्न
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
उत्तर
We have to prove: `tan((C + A)/2) = cot B/2`
Since we know that in triangle ABC
A + B + C = 180
`=> C + A = 180^@ - B`
`=> (C + A)/2 = 90^@ - B/2`
`=> tan (C + A)/2 = tan (90^@ - B/2)`
`=> tan (C + A)/2 = cot B/2`
Proved
APPEARS IN
संबंधित प्रश्न
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
Evaluate the following :
`cos 19^@/sin 71^@`
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Prove that
tan (55° − θ) − cot (35° + θ) = 0
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
Prove that:
cos2 30° - sin2 30° = cos 60°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`