हिंदी

Find the value of x in the following: √ 3 sin x = cos x - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of x in the following: `sqrt(3)sin x` = cos x

योग

उत्तर

`sqrt(3)sin x` = cos x
⇒ `"sin x"/cos x" = (1)/sqrt(3)`
⇒ tanx = tan30°
⇒ x = 30°.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 8.3

संबंधित प्रश्न

Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º


Evaluate the following

`sec 11^@/(cosec 79^@)`


Evaluate the following :

cosec 31° − sec 59°


Evaluate the following :

(sin 72° + cos 18°) (sin 72° − cos 18°)


Evaluate the following 

sec 50º sin 40° + cos 40º cosec 50º 


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

 sin 67° + cos 75°


Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@  - 4 cos 50^@ cosec 40^@`


Evaluate: `(3 cos 55^@)/(7 sin 35^@) -  (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan  85^@))`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sin67° + cos75° 


If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ


Prove that:

sin 60° cos 30° + cos 60° . sin 30°  = 1


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of sin 60o


Evaluate: 

`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°


find the value of: tan 30° tan 60°


find the value of :

`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`


secθ . Cot θ= cosecθ ; write true or false


Without using tables, evaluate the following: tan230° + tan260° + tan245°


Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).


Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`


Find the value of x in the following: tan x = sin45° cos45° + sin30°


If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA


If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B


If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.


Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°


Evaluate: sin2 60° + 2tan 45° – cos2 30°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×