Advertisements
Advertisements
प्रश्न
Evaluate: sin2 60° + 2tan 45° – cos2 30°.
उत्तर
sin2 60° + 2tan 45° – cos2 30°
= `(sqrt(3)/2)^2 + 2(1) - (sqrt(3)/2)^2`
= `3/4 + 2 - 3/4`
= 2
APPEARS IN
संबंधित प्रश्न
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Evaluate tan 35° tan 40° tan 50° tan 55°
Find the value of:
tan2 30° + tan2 45° + tan2 60°
find the value of: sin2 30° + cos2 30°+ cot2 45°
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°