Advertisements
Advertisements
प्रश्न
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
उत्तर
We have to find: (sin 72° + cos 18°) (sin 72° − cos 18°)
Since `sin(90^@ - theta) = cos theta` So
sin 72° + cos 18°) (sin 72° − cos 18°) = `(sin 72^@)^2 - (cos 18^@)^2`
`= [sin (90^@ - 18^@)]^2 - (cos 18^@)^2`
`= (cos 18^@)^2 - (cos 18^@)^2`
`= cos^2 18^@ - cos^2 18^@`
= 0
So value of `(sin 72^@ + cos 18^@)(sin 72^@ - cos 18^@)` is 0
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
`(2 tan 30°)/(1-tan^2 30°)` = ______.
Evaluate cos 48° − sin 42°
Prove that:
sin 60° = 2 sin 30° cos 30°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
Prove that : sec245° - tan245° = 1
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
Verify the following equalities:
sin2 60° + cos2 60° = 1