Advertisements
Advertisements
प्रश्न
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
उत्तर
cosec54°+sin72°
=sec(90°−54°)+cos(90°−72°)
=sec36°+cos18°
APPEARS IN
संबंधित प्रश्न
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Find the value of x in the following: 2 sin3x = `sqrt(3)`