Advertisements
Advertisements
प्रश्न
find the value of: tan 30° tan 60°
उत्तर
tan 30° tan 60° = `(1)/(sqrt3)(sqrt3) = 1`
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Prove that
tan (55° − θ) − cot (35° + θ) = 0
If sin x = cos y, then x + y = 45° ; write true of false
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
secθ . Cot θ= cosecθ ; write true or false
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Prove that : cos60° . cos30° - sin60° . sin30° = 0
Find the value of x in the following: `2sin x/(2)` = 1
Find the value of x in the following: tan x = sin45° cos45° + sin30°
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`