Advertisements
Advertisements
प्रश्न
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
उत्तर
We will simplify the left-hand side
`sin 48° sec 42° + cos 48° cosec 42° = sin 48^@. sec(90^@ - 48^@) + cos 48^@ cosec (90^@ - 48^@)`
`= sin 48^@. sec 48^@ + cos 48^@. cosec 42^@ = sin 48^@ . sec(90^@ - 48^@) + cos 48^@.cosec (90^@ - 48^@)`
`= sin 48^@.cos 48^@ + cos 48^@. sin 48^@`
= 1 + 1
= 2
Proved
APPEARS IN
संबंधित प्रश्न
`(2 tan 30°)/(1+tan^2 30°)` = ______.
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
find the value of: cos2 60° + sin2 30°
find the value of: sin2 30° + cos2 30°+ cot2 45°
Prove that:
cosec2 45° - cot2 45° = 1
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B