मराठी

If tan(A - B) = 1 √ 3 and tan(A + B) = √ 3 , find A and B. - Mathematics

Advertisements
Advertisements

प्रश्न

If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.

बेरीज

उत्तर

tan(A - B) = `(1)/sqrt(3)`

⇒ tan(A - B) = tan30°
⇒ A - B = 30° ......(i)
tan(A + B) = `sqrt(3)`
⇒ tan(A + B) = tan60°
⇒ A + B = 60° ........(ii)
Adding (i) and (ii)
A - B + A + B = 30° + 60°
⇒ 2A = 90°
⇒ A = 45°
Substituting value of A in (i)
A - B = 30°
45° - B = 30°
B = 15°
Therefore,
A = 45° and B = 15°.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रँक Mathematics [English] Class 9 ICSE
पाठ 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 24

संबंधित प्रश्‍न

`(2 tan 30°)/(1-tan^2 30°)` = ______.


State whether the following is true or false. Justify your answer.

sin (A + B) = sin A + sin B


Evaluate the following 

sec 50º sin 40° + cos 40º cosec 50º 


Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°

Sin 59° + cos 56°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

sec 76° + cosec 52°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cosec 54° + sin 72°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cot 85° + cos 75°


Prove that  tan 20° tan 35° tan 45° tan 55° tan 70° = 1


Prove the following

sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0


Prove the following

 sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1


Evaluate: `(3 cos 55^@)/(7 sin 35^@) -  (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan  85^@))`


Prove that

cosec (67° + θ) − sec (23° − θ) = 0


Prove that:

4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2


secθ . Cot θ= cosecθ ; write true or false


Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B


If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.


Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).


Prove that : sec245° - tan245° = 1


Find the value of x in the following: `2sin  x/(2)` = 1


If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B


Verify cos3A = 4cos3A – 3cosA, when A = 30°


Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°


If sin 30° = x and cos 60° = y, then x2 + y2 is


If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.


Evaluate: `(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×