Advertisements
Advertisements
प्रश्न
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
उत्तर
tan(A - B) = `(1)/sqrt(3)`
⇒ tan(A - B) = tan30°
⇒ A - B = 30° ......(i)
tan(A + B) = `sqrt(3)`
⇒ tan(A + B) = tan60°
⇒ A + B = 60° ........(ii)
Adding (i) and (ii)
A - B + A + B = 30° + 60°
⇒ 2A = 90°
⇒ A = 45°
Substituting value of A in (i)
A - B = 30°
45° - B = 30°
B = 15°
Therefore,
A = 45° and B = 15°.
APPEARS IN
संबंधित प्रश्न
`(2 tan 30°)/(1-tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
secθ . Cot θ= cosecθ ; write true or false
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Prove that : sec245° - tan245° = 1
Find the value of x in the following: `2sin x/(2)` = 1
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
Verify cos3A = 4cos3A – 3cosA, when A = 30°
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
If sin 30° = x and cos 60° = y, then x2 + y2 is
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`