मराठी

Prove that: 4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2

बेरीज

उत्तर

LHS = `4(sin^4 30°+  cos^4 60°)- 3(cos^2 45° –  sin^2 90°)`

= `4[(1/2)^4 + (1/2)^4] – 3[(1/sqrt2)^2 + (1)^4]`

= `4[ (1)/(16) + (1)/(16) ] – 3[ (1)/(2) – 1]`

= `(4 xx 2 )/(16) + 3 xx (1)/(2)`

= 2 

RHS = 2

LHS = RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [पृष्ठ २९१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 6.2 | पृष्ठ २९१

संबंधित प्रश्‍न

Evaluate the following in the simplest form:

sin 60° cos 30° + cos 60° sin 30°


`(2 tan 30°)/(1+tan^2 30°)` = ______.


`(2 tan 30°)/(1-tan^2 30°)` = ______.


State whether the following is true or false. Justify your answer.

sin (A + B) = sin A + sin B


Evaluate the following :

`cos 19^@/sin 71^@`


Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°

Sin 59° + cos 56°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

tan 65° + cot 49°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cos 78° + sec 78°


If A, B, C are the interior angles of a triangle ABC, prove that

`tan ((C+A)/2) = cot  B/2`


Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°


Without using trigonometric tables, prove that:

cos54° cos36° − sin54° sin36° = 0


Prove that

cosec (67° + θ) − sec (23° − θ) = 0


If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°


Evaluate: 

`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°


If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)


If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.


Prove that:

cos 30° . cos 60° - sin 30° . sin 60°  = 0


Prove that:

cosec2 45°  - cot2 45°  = 1


prove that:

tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°


For any angle θ, state the value of: sin2 θ + cos2 θ


Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B


If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A


Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.


Find the value of x in the following: `2sin  x/(2)` = 1


If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.


Find the value of the following:

sin2 30° – 2 cos3 60° + 3 tan4 45°


The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.


Evaluate: `(5  "cosec"^2  30^circ - cos 90^circ)/(4 tan^2 60^circ)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×