Advertisements
Advertisements
प्रश्न
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
उत्तर
LHS = `4(sin^4 30°+ cos^4 60°)- 3(cos^2 45° – sin^2 90°)`
= `4[(1/2)^4 + (1/2)^4] – 3[(1/sqrt2)^2 + (1)^4]`
= `4[ (1)/(16) + (1)/(16) ] – 3[ (1)/(2) – 1]`
= `(4 xx 2 )/(16) + 3 xx (1)/(2)`
= 2
RHS = 2
LHS = RHS
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
`(2 tan 30°)/(1+tan^2 30°)` = ______.
`(2 tan 30°)/(1-tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
Evaluate the following :
`cos 19^@/sin 71^@`
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Prove that:
cosec2 45° - cot2 45° = 1
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
For any angle θ, state the value of: sin2 θ + cos2 θ
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Find the value of x in the following: `2sin x/(2)` = 1
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`