Advertisements
Advertisements
प्रश्न
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
उत्तर
We know that `sec(90^@ - theta) = cosec theta` and `cosec (90^@) = sin theta` So
`sec 76^@ + cosec 52^@ = sec(90^@ - 14^@) + cosec (90^@ - 38^@)`
`= cosec14^@ + sec 38^@`
APPEARS IN
संबंधित प्रश्न
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
find the value of: cosec2 60° - tan2 30°
Prove that:
cos2 30° - sin2 30° = cos 60°
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1