मराठी

find the value of: cosec2 60° - tan2 30° - Mathematics

Advertisements
Advertisements

प्रश्न

find the value of: cosec2 60° - tan2 30°

बेरीज

उत्तर

cosec2 60° – tan2 30° = `(2/sqrt3)^2 – (1/sqrt3)^2 = (4)/(3) – (1)/(3) = 1`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [पृष्ठ २९१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 1.4 | पृष्ठ २९१

संबंधित प्रश्‍न

Find the value of x in the following :

tan 3x = sin 45º cos 45º + sin 30º


Evaluate the following:

`(cos 45°)/(sec 30° + cosec  30°)`


Evaluate the following:

`(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° +  cos^2 30°)`


`(1- tan^2 45°)/(1+tan^2 45°)` = ______


Evaluate cos 48° − sin 42°


Evaluate the following :

`(cot 40^@)/cos 35^@ -  1/2 [(cos 35^@)/(sin 55^@)]`


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

tan 65° + cot 49°


Prove the following

sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0


Evaluate:

`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.


Evaluate: `cos 58^@/sin 32^@  + sin 22^@/cos 68^@  - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`


Prove that

cosec (67° + θ) − sec (23° − θ) = 0


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cot65° + tan49°


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cosec54° + sin72°


prove that:

sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°


If sin x = cos x and x is acute, state the value of x


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of sin 60o


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°


If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`


If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B


Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°


Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.


Prove that : cos60° . cos30° - sin60° . sin30° = 0


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB


If sin(A +B) = 1(A -B) = 1, find A and B.


In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB


Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°


The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×