हिंदी

find the value of: cosec2 60° - tan2 30° - Mathematics

Advertisements
Advertisements

प्रश्न

find the value of: cosec2 60° - tan2 30°

योग

उत्तर

cosec2 60° – tan2 30° = `(2/sqrt3)^2 – (1/sqrt3)^2 = (4)/(3) – (1)/(3) = 1`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [पृष्ठ २९१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 1.4 | पृष्ठ २९१

संबंधित प्रश्न

Evaluate the following expression:

(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`

(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`


Find the value of θ in each of the following :

(i) 2 sin 2θ = √3      (ii) 2 cos 3θ = 1


If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.


`(1- tan^2 45°)/(1+tan^2 45°)` = ______


Evaluate the following :

`tan 10^@/cot 80^@`


Evaluate the following :

`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`


Prove that sin 48° sec 42° + cos 48° cosec 42° = 2


Prove the following

`(tan (90 - A) cot A)/(cosec^2 A)   - cos^2 A =0`


Prove the following :

`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`


Evaluate:

`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.


Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)


If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ


find the value of :

`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`


Prove that:

cosec2 45°  - cot2 45°  = 1


Prove that:

3 cosec2 60°  - 2 cot2 30°  + sec2 45°  = 0


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°


Prove that:

4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2


If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.


Given A = 60° and B = 30°,

prove that: tan (A - B) = `(tan"A"  –  tan"B")/(1 + tan"A".tan"B")`


If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`


Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos2


Prove that : sec245° - tan245° = 1


If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B


If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.


Verify the following equalities:

sin 30° cos 60° + cos 30° sin 60° = sin 90°


Find the value of the following:

`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`


Verify cos3A = 4cos3A – 3cosA, when A = 30°


The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×