Advertisements
Advertisements
प्रश्न
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
उत्तर
cosec (65 + θ) = sec (90 – (65 + θ)) = sec (25 – θ)
tan (55 – θ) = cot (90 – (55 – θ) = cot (35 + θ)
⇒ sec (25 – θ) – sec (25 – θ) tan (55 – θ) + tan (55 – θ) = 0
APPEARS IN
संबंधित प्रश्न
Evaluate cos 48° − sin 42°
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
find the value of: tan 30° tan 60°
secθ . Cot θ= cosecθ ; write true or false
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to