Advertisements
Advertisements
प्रश्न
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
उत्तर
Given that B = 20°
`(3 sin 3"B"+2 cos(2"B"+5°))/(2 cos 3"B" – sin (2"B" – 10°)` = `(3 sin 3 xx 20°+2 cos(2 xx 20°+5°))/(2 cos 3 xx 20° – sin (2 xx 20° – 10°))`
= `( 3 sin 60° + 2 cos 45°)/(2 cos 60° – sin 30°)`
= `(3(sqrt3/2) + 2(1/sqrt2))/(2(1/2) – (1)/(2)`
= `(3(sqrt3)/(2) + sqrt2)/(2)`
= `3 sqrt3 + 2 sqrt2`
APPEARS IN
संबंधित प्रश्न
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Evaluate tan 35° tan 40° tan 50° tan 55°
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
find the value of: sin2 30° + cos2 30°+ cot2 45°
Prove that:
cos2 30° - sin2 30° = cos 60°
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Find the value of x in the following: `2sin x/(2)` = 1
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).