Advertisements
Advertisements
प्रश्न
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
उत्तर
Given that A = 30°
LHS = sin 3 A
= sin 3(30°)
= sin 90°
=1
RHS = 4 sin A sin (60° – A) sin (60° + A)
= 4 sin 30° sin ( 60° – 30°) sin (60° + 30°)
= `4(1/2)(1/2)(1)`
= 1
LHS = RHS
APPEARS IN
संबंधित प्रश्न
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
`(2 tan 30°)/(1+tan^2 30°)` = ______.
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Prove that : sec245° - tan245° = 1
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
Verify the following equalities:
1 + tan2 30° = sec2 30°
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
If sin 30° = x and cos 60° = y, then x2 + y2 is
The value of 5 sin2 90° – 2 cos2 0° is ______.
Evaluate: sin2 60° + 2tan 45° – cos2 30°.