Advertisements
Advertisements
प्रश्न
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
उत्तर
2tan2 45° + cos2 30° − sin2 60°
= `2(1)^2 + ((sqrt3)/2)^2 - ((sqrt3)/2)^2`
= `2(1)^2 + (sqrt3/2)^2 - ((sqrt3)/2)^2`
= `2+3/4 - 3/4`
= 2
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
`(2 tan 30°)/(1+tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
Evaluate cos 48° − sin 42°
Show that tan 48° tan 23° tan 42° tan 67° = 1
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Prove that
sin (70° + θ) − cos (20° − θ) = 0
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
Find the value of x in the following: `sqrt(3)sin x` = cos x
Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.