Advertisements
Advertisements
Question
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
Solution
Given that B = 20°
`(3 sin 3"B"+2 cos(2"B"+5°))/(2 cos 3"B" – sin (2"B" – 10°)` = `(3 sin 3 xx 20°+2 cos(2 xx 20°+5°))/(2 cos 3 xx 20° – sin (2 xx 20° – 10°))`
= `( 3 sin 60° + 2 cos 45°)/(2 cos 60° – sin 30°)`
= `(3(sqrt3/2) + 2(1/sqrt2))/(2(1/2) – (1)/(2)`
= `(3(sqrt3)/(2) + sqrt2)/(2)`
= `3 sqrt3 + 2 sqrt2`
APPEARS IN
RELATED QUESTIONS
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
sin 2A = 2 sin A is true when A = ______.
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Prove that
sin (70° + θ) − cos (20° − θ) = 0
If sin x = cos y, then x + y = 45° ; write true of false
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
Prove that:
cos2 30° - sin2 30° = cos 60°
secθ . Cot θ= cosecθ ; write true or false
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
If sin(A +B) = 1(A -B) = 1, find A and B.
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to