Advertisements
Advertisements
Question
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Solution
cos 90° = 0, sin 45° = `1/sqrt(2)`, cos 45° = `1/sqrt(2)`
cos 90° = 0 ...(1)
1 – 2 sin2 45° = `1 - 2(1/sqrt(2))^2`
= `1 - 2 xx 1/2`
= 1 – 1 = 0 → (2)
2 cos2 45° – 1 = `2(1/sqrt(2))^2 - 1`
= `2/2 - 1`
= `(2 - 2)/2`
= 0 → (3)
From (1), (2) and (3) we get
cos 90° = 1 – 2 sin2 45° = 2 cos2 45° – 1
Hence it is proved.
APPEARS IN
RELATED QUESTIONS
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
sin 2A = 2 sin A is true when A = ______.
Evaluate the following :
`cos 19^@/sin 71^@`
Prove that:
sin 60° = 2 sin 30° cos 30°
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
Find the value of x in the following: tan x = sin45° cos45° + sin30°
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is