Advertisements
Advertisements
Question
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Solution
sin230° cos245° + 4tan230° + sin290° + cos20°
sin30° = `(1)/(2)`
cos45° = `(1)/sqrt(2)`
tan30° = `(1)/sqrt(3)`
sin90° = 1
cos0° = 1
sin230° cos245° + 4tan230° + sin290° + cos20°
= `(1/2)^2 (1/sqrt(2))^2 + 4(1/sqrt(3))^2 + 1 + 1`
= `(1)/(4) xx (1)/(2) + (4)/(3) + 2`
= `(1)/(8) + (4)/(3) + 2`
= `(3 + 32 + 48)/(24)`
= `(83)/(24)`.
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
Prove that:
sin 60° = 2 sin 30° cos 30°
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
find the value of: cosec2 60° - tan2 30°
Prove that:
cosec2 45° - cot2 45° = 1
Prove that:
cos2 30° - sin2 30° = cos 60°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
Find the value of x in the following: `sqrt(3)sin x` = cos x
Verify the following equalities:
1 + tan2 30° = sec2 30°
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
If sin 30° = x and cos 60° = y, then x2 + y2 is
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.
The value of 5 sin2 90° – 2 cos2 0° is ______.
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.
Evaluate: sin2 60° + 2tan 45° – cos2 30°.