English

Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20° - Mathematics

Advertisements
Advertisements

Question

Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos2

Sum

Solution

sin230° cos245° + 4tan230° + sin290° + cos2

sin30° = `(1)/(2)`

cos45° = `(1)/sqrt(2)`

tan30° = `(1)/sqrt(3)`

sin90° = 1
cos0° = 1
sin230° cos245° + 4tan230° + sin290° + cos2

= `(1/2)^2 (1/sqrt(2))^2 + 4(1/sqrt(3))^2 + 1 + 1`

= `(1)/(4) xx (1)/(2) + (4)/(3) + 2`

= `(1)/(8) + (4)/(3) + 2`

= `(3 + 32 + 48)/(24)`

= `(83)/(24)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 1.06

RELATED QUESTIONS

Evaluate the following:

2tan2 45° + cos2 30° − sin2 60°


Evaluate the following :

sin 35° sin 55° − cos 35° cos 55°


If A, B, C are the interior angles of a triangle ABC, prove that

`tan ((C+A)/2) = cot  B/2`


Prove that sin 48° sec 42° + cos 48° cosec 42° = 2


Prove the following :

`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ -  theta)) + tan (90^@ - theta)/cot theta = 2`


Prove the following

`(tan (90 - A) cot A)/(cosec^2 A)   - cos^2 A =0`


Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sec78° + cosec56°


Prove that:
sin 60° = 2 sin 30° cos 30°


Evaluate: 

`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°


Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B


If A =30o, then prove that :
sin 2A = 2sin A cos A =  `(2 tan"A")/(1 + tan^2"A")`


If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)


find the value of: cosec2 60° - tan2 30°


Prove that:

cosec2 45°  - cot2 45°  = 1


Prove that:

cos2 30°  - sin2 30° = cos 60°


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°


Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°


Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.


Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`


Find the value of x in the following: `sqrt(3)sin x` = cos x


Verify the following equalities:

1 + tan2 30° = sec2 30°


Find the value of the following:

(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)


Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°


If sin 30° = x and cos 60° = y, then x2 + y2 is


If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.


The value of 5 sin2 90° – 2 cos2 0° is ______.


`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.


Evaluate: sin2 60° + 2tan 45° – cos2 30°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×