Advertisements
Advertisements
Question
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.
Options
`2/3`
`(-4)/5`
0
`(-2)/15`
Solution
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to `underlinebb((-4)/5)`.
Explanation:
We have,
`\implies 2/3 sin 0^circ - 4/5 cos 0^circ`
`\implies 2/3 xx 0 - 4/5 xx 1`
= `-4/5`
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
find the value of: cos2 60° + sec2 30° + tan2 45°
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
If sin(A +B) = 1(A -B) = 1, find A and B.