Advertisements
Advertisements
प्रश्न
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
उत्तर
Given that A = 30°
LHS = `(1 – cos2 "A")/(sin 2"A")`
= `(1 – cos 2 (30°))/(sin2 (30°))`
= `(1 – (1)/(2))/((sqrt3)/(2)`
= `(1)/(sqrt3)`
RHS = tan A
= tan 30°
= `(1)/(sqrt3)`
LHS = RHS
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
Evaluate the following
`sec 11^@/(cosec 79^@)`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
Evaluate tan 35° tan 40° tan 50° tan 55°
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Prove that
tan (55° − θ) − cot (35° + θ) = 0
find the value of: sin 30° cos 30°
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
find the value of: cos2 60° + sec2 30° + tan2 45°
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
Prove that:
cos2 30° - sin2 30° = cos 60°
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Prove that : cos60° . cos30° - sin60° . sin30° = 0
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Verify the following equalities:
1 + tan2 30° = sec2 30°
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
Verify cos3A = 4cos3A – 3cosA, when A = 30°
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10
Evaluate: sin2 60° + 2tan 45° – cos2 30°.