Advertisements
Advertisements
प्रश्न
find the value of: sin 30° cos 30°
उत्तर
sin 30° cos 30° = `(1)/(2).(sqrt3)/(2)=(sqrt3)/(4)`
APPEARS IN
संबंधित प्रश्न
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Evaluate the following :
cosec 31° − sec 59°
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Evaluate tan 35° tan 40° tan 50° tan 55°
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Find the value of x in the following: `2sin x/(2)` = 1
Find the value of x in the following: `sqrt(3)sin x` = cos x
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
Verify cos3A = 4cos3A – 3cosA, when A = 30°
If sin 30° = x and cos 60° = y, then x2 + y2 is
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°