Advertisements
Advertisements
प्रश्न
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
उत्तर
We know `sin(90^@ - theta) = cos theta` and `cosec(90^@ - theta) = sec theta` So
`cosec 54° + sin 72° = cosec(90^@ - 36^@) + sin (90^@ - 18^@)`
`= sec 36^@ + cos 18^@`
hus the desired expression is sec 36^@ + cos 18^@`
APPEARS IN
संबंधित प्रश्न
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Prove that
tan (55° − θ) − cot (35° + θ) = 0
If sin x = cos x and x is acute, state the value of x
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°