Advertisements
Advertisements
प्रश्न
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
उत्तर
`cos 30° = sqrt3/2, sin 60° = sqrt3/2, cot 30° = sqrt3, sin 45° = 1/sqrt2, sec 45° = sqrt2` ...(I)
∴ `2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°` ...(From I)
`= 2/3 [(sqrt3/2)^4 - (1/sqrt2)^4]- 3[(sqrt3/2)^2 - (sqrt2)^2] + 1/4 (sqrt3)^2`
`= 2/3 [9/16 - 1/4] - 3[3/4 - 2] + [1/4 × 3]`
`= 2/3 [9/16 - 4/16] - 3[3/4 - 8/4] + 3/4`
`= 2/3 [(9 - 4)/16] - 3[(3 - 8)/4] + 3/4`
`= 2/3 [5/16] - 3[(- 5)/4] + 3/4`
`= 2/3 × 5/16 - 3 × (- 5)/4 + 3/4`
`= 5/24 + 15/4 + 3/4`
`= (5 + 90 + 18)/24`
`= 113/24`
APPEARS IN
संबंधित प्रश्न
An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
Find the value of:
tan2 30° + tan2 45° + tan2 60°
find the value of: cosec2 60° - tan2 30°
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Prove that : sec245° - tan245° = 1
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°