Advertisements
Advertisements
प्रश्न
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
उत्तर
We know that `sec(90^@ - theta) = cosec theta` and `cosec (90^@) = sin theta` So
`sec 76^@ + cosec 52^@ = sec(90^@ - 14^@) + cosec (90^@ - 38^@)`
`= cosec14^@ + sec 38^@`
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
find the value of: sin2 30° + cos2 30°+ cot2 45°
find the value of: cos2 60° + sec2 30° + tan2 45°
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
For any angle θ, state the value of: sin2 θ + cos2 θ
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Find the value of x in the following: `2sin x/(2)` = 1
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is